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ABSTRACT 

By decision-making in  a  fuzzy  environment  is  meant  a 

decision  process  in  which  the  goals  and/or  the  constraints,  but  not 

necessarily  the  system  under  control,  are  fuzzy  in  nature.  This  means 

that  the  goals  and/or  the  constraints  Constitute  classes Of alternatives 

whose  boundaries  are  not  sharply  defined. 

An  example  of a fuzzy  constraint  is:  "The  cost  of A 

should  not  be  substantially  higher  than a," where a is  a  specified 

constant.  Similarly,  an  example  of  a  fuzzy  goal is: "x  should  be  in 

the  vicinity  of  x ' I  where  x  is  a  constant.  The  underlined  words  are 

the  sources  of  fuzziness  in  these  examples. 
0, 0 

Fuzzy  goals  and  fuzzy  constraints  can  be  defined  pre- 

cisely  as  fuzzy  sets  in  the  space  of  alternatives.  A  fuzzy  decision, 

then,  may  be  viewed as an intersection  of  the  given  goals  and  con- 

straints.  A  maximizing  decision  is  defined  as  the  set  of  points  in 

the  space of alternatives  at  which  the  membership  function  of  a  fuzzy 

decision  attains  its  maximum  value. 

The  use  of  these  concepts  is  illustrated  by  examples 

involving  multistage  decision  processes  in  which  the  system  under 
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control  is  either  deterministic  or  stochastic. By using  dynamic  pro- 

gramming,  the  determination  of a maximizing  decision is reduced to the 

solution of a system of functional  equations. A reverse-flow  technique 

is  described  for  the solution of a functional  equation  arising in con- 

nection  with a decision  process  in which the  termination  time  is  defined 

implicitly by  the condition that the  process  stops when the  system  under 

control  enters a specified set  of states in its state space. 
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1. INTRODUCTION 

Much  of  the  decision-making  in  the  real  world  takes  place 

in  an  environment  in  which  the  goals,  the  constraints  and  the  conse- 

quences  of  possible  actions  are  not  known  precisely. To deal  quantita- 

tively  with  imprecision,  we  usually  employ  the  concepts  and  techniques of 

probability  theory  and,  more  particularly,  the  tools  provided  by  decisSon 

theory,  control  theory  and  information  theory. In so doing,  we  are  tac- 

itly  accepting  the  premise  that  imprecision - whatever  its  nature - c.an 
be  equated  with  randomness.  This,  in  our  v+ew,  is  a  questionable  as- 

sump t ion. 

Specifically,  our  contention  is  that  there  is  a  need  for 

differentiation  between  randomness  and  fuzziness,  with’  the  latter  being 

a  major  source  of  imprecision  in  many  decision  processes.  By  fuzziness, 

we  mean  a  type of imprecision  which  is  associated  with  the  use  of  fuzzy 

sets,’”that is,  classes  in  which  there  is  no  sharp  transition  from 

membership  to  non-membership.  For  example,  the  class of green  objects 

is  a  fuzzy  set. So are  the  classes  of  objects  characterized  by  such 

commonly  used  adjectives  as  large,  small,  substantial,  significant, 

important,  serious,  simple,  accurate,  approximate,  etc.  Actually,  in 

sharp  contrast  to  the  notion  of  a  class  or  a  set  in  mathematics,  most  of 

the  classes  in  the  real  world  do  not  have  crisp  boundaries  which  separate 

those  objects  which  belong  to  the  classes  in  question  from  those  which 

do  not. In this  connection,  it is important  to  note  that,  in  the  dis- 

course  between  humans,  statements  such  as  “John is several  inches  taller 
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than Jim," "x is  much  larger  than  y,  "Corporation X has a bright 

future,  "the  stock  market  has  suffered a sharp  decline,  convey  inf or- 

matlon  despite  the  fuzziness  of  the  meaning of the  underlined  words.  In 

fact,  it  may  be  argued  that  the  main  distinction  between  human  intel- 

ligence  and  machine  inte1,ligence  lies  in  the  ability of humans -- an 
ability  which  present-day  computers  do  not  possess -- to  manipulate 
fuzzy  concepts  and  respond to fuzzy  instructions. 

What  is  the  distinction  between  randomness  and  fuzziness? 

Essentially,  randomness  has  to  do  with  unkertainty  concerning  membership 

or  non-membership of an  object  in a non-fuzzy  set.  Fuzziness,  on  the 

other  hand,  has  to  do  with  classes  in  which  there  may  be  grades  of  mem- 

bership  intermediate  between  full  membership  and  non-membership. To 

illustrate  the  point,  the  fuzzy  assertion  "Corporation X has a modern 

outlook"  is  imprecise  by  virtue  of  the  fuzziness  of  the  terms  "modern 

outlook."  On  the  other  hand,  the  statement  "The  probability  that  Cor- 

poration X is  operating  at a loss  is 0.8," is a measure of the  uncer- 

tainty  concerning  the  membership  of  Corporation X in  the  non-fuzzy  class 

of corporations  which  are  operating  at a loss. 

Reflecting  this  distinction,  the  mathematical  techniques 

for  dealing  with  fuzziness  are  quite  different  from  those  of  probability 

theory.  They  are  simpler  in  many  ways  because  to  the  notion  of  prob- 

ability  measure  in  probability  theory  corresponds  the  simpler  notion  of 

membership  function  in  the  theory  of  fuzziness.  Furthermore,  the  cor- 
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respondents  of a + b and  ab,  where a and b are  real  numbers,  are  the 
simpler  operations  Max(a,b)  and  Min(a,b).  For  this  reason,  even in 

those  cases  in  which  fuzziness  in a decision  process  can  be  simulated  by 

a probabilistic  model,  it  is  generally  advantageous  to  deal  with  it 

through  the  techniques  provided  by  the  theory  of  fuzzy  sets  rather  than 

through  the  employment  of  the  conceptual  framework  of  probability  theory. 

Decision  processes  in  which  fuzziness  enters  in  one  way 

or another’can be  studied  from  many  points  of  view. 3’4 ’5 In  the  present 

note,  our  main  concern  is  with  introducing  three  basic  concepts:  fuzzy 

goal,  fuzzy  constraint  and  fuzzy  decision,  and  exploring  the  application 

of these  concepts  to  multistage  decision  processes  in  which  the  goals  or 

the  constraints  may  be  fuzzy,  while  the  system  under  control  may  be  either 

deterministic  or  stochastic - but  not  fuzzy.  This,  however,  is  not  an 
intrinsic  restriction  on  the  applicability  of  the  concepts  and  techniques 

described  in  the  following  sections. 

Roughly  speaking,  by a fuzzy  goal  we  mean  an  objective 

which  can  be  characterized  as a fuzzy  set  in  an  appropriate  space. To 

illustrate, a simple  example  of a fuzzy  goal  involving a real-valued 

variable x would  be:  “x  should  be  substantially  larger  than 100.” 

Similarly, a simple  example of a fuzzy  constraint  would  be:  “x  should 

be  approximately  in  the  range 20-25.’’ The  sources  of  fuzziness  in  these 

statements  are  the  underlined  words. 
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A less  trivial  example  is  provided  by a deterministic 

discrete-time  system  characterized  by  the  state  equations 

xn+l = xn + un , n=0,1,2,. . . 
where x and u denote,  respectively,  the  state  and  input  at  time n and 

in  which  for  simplicity  xn  and  un  are  assumed  to  be  real-valued.  Here 

a fuzzy  constraint  on  the  input  may  be 

n  n 

where  the  wavy  bar  under a symbol  plays  the  role  of a fuzzifier,  that  is, 

a transformation  which  takes a non-fuzzy  set  into a fuzzy  set  which  is 

approximately  equal to it.  In  this  instance, u < 1, would  read  "un 

should  be  approximately  less  than  or  equal  to 1, and  the  effect  of  the 

fuzzifier  is  to  transform  the  non-fuzzy  set - 1 < u < 1 into a fuzzy  set 

-1 - un 5 1. The  way  in  which  the  latter  set  can  be  given a precise  mean- 

n: 

- n -  
w u 

ing  will  be  discussed  in  Section  2. 

Assume  that  the  fuzzy  goal  is to make x approximately 3 
equal  to 5, starcing  with  the  initial  state x. = 1. Then,  the  problem  is 

to  find a sequence  of  inputs u ul, u2 which  will  realize  the  specified 

goal  as  nearly  as  possible,  subject  to  the  specified  constraints  on u 
0' 

0' ul, 

In  what  follows, we shall  consider  in  greater  detail a few 

representative  problems  of  this  type. It should  be  stressed  that  our 

limited  objective  in  the  present  paper  is  to  draw  attention  to  problems 

involving  multistage  decision  processes  in a fuzzy  environment  and 
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suggest  tentative  ways  of  attacking  them,  rather  than  to  develop a gen- 

eral  theory of decision  processes  in  which  fuzziness  and  randomness  may 

enter.in a variety  of  ways  and  combinations.  In  particular, we shall  not 

concern  ourselves  with  the  application  to  decision-making  of  the  concept 

of a fuzzy  algorithm3 - a concept  which  may  be  of  use  in  problems  which 
are  less  susceptible  to  quantitat'ive  analysis  than  those  considered  in 

the  sequel. 

For  convenience  of  the  reader, a brief  summary of the 

basic  properties  of  fuzzy  sets is provided  in  the  following  section. 

"" ~ .. . ~- ~~~ ~~ 

2. A Brief  Introduction  to  Fuzzy  Sets 

Informally, a fuzzy  set  is a class  of  objects  in  which 

there  is  no  sharp  boundary  between  those  objects  that  belong  to  the  class 

and  those  that  do  not. A more  precise  definition  may  be  stated  as  fol- 

lows. 

Definition.  Let X = (x} denote a collection  of  objects  (points)  denoted 

generically  by x. Than a fuzzy  set A X is a set  of  ordered  pairs 

A = {(x,pA(x))} , x E X (1) 

where p (x) is  termed  the  grade  of  membership of x A, and vA: X +. M 

is a function  from X to a space M called  the  membership  space.  When M 

contains  only  two  points, 0 and 1, A is  non-fuzzy  and  its  membership 

A 
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function  becomes  identical  with  the  characteristic  function  of a non- 

fuzzy  set. 

In  what  follows,  we  shall  assume  that M is the  interval 

[0,1], with 0 and 1 representing,  respectively,  the  lowest  and  highest 

grades  of  membership.  (More  generally, M can  be a partially  ordered  set 

or,  more  particularly, a lattice6” .) Thus,  our  basic  assumption  is  that 
a fuzzy  set A - despite  the  unsharpness  of  its  boundaries - can  be  de- 
fined  precisely  by  associating  with  each  object x  a number  between 0 and 

1 which  represents  its  grade  of  membership  in A. 

Example  Let X = (0,1,2,. . . I  be  the  collection  of  non-negative  integers. 

In  this  space,  the  fuzzy  set A of  “several  objects”  may  be  defined  (sub- 

jectively)  as  the  collection  of  ordered  pairs 

A = {(3,0.6) , (4,0.8), (5,1.0), (6,1.0),  (7,0.8),  (8,0.6)) (2) 

with  the  understanding  that  in ( 2 )  we  list  only  those  pairs  (x,v (x)) 

in  which LI (x)  is  positive. 

A 

A 

Comment, It should  be  noted  that  in  many  practical  situations  the  member- 

ship  function, LIAy has to be  estimated  from  partial  information  about  it, 

such  as  the  values  which  it  takes  over a finite  set  of  sample  points 

xl, ...,%. When A is  defined  incompletely - and  hence  only  approximately - 
in  this  fashion, we shall  say  that  it  is  partially  defined  by  exempli- 

\ 

6 



f ication.  The  problem  of  estimating pA from.  the. knowledge of the  set of 

pairs  (xl,pA(xl)) , .. . (%,pA(%)) is  the  problem  of  abstraction - a prob- 
lem  that  plays a central  role in pattern  recognition. ” We  shall  not 

concern  ourselves  with  the  solution of this  problem in the  present 

paper  and  will  assume  throughout - except  where  explicitly  stated  to  the 
contrary - that p (x) is  given  for  all x in X. A 

For  notational  purposes,  it  is  convenient  to  have a de- 

vice  for  indicating  that a fuzzy  set A .is obtained  from a non-fuzzy  set 

by  fuzzifying  the  boundaries  of  the  latter  set.  For  this  purpose, we 

shall  employ a wavy  bar  under a symbol  (or  symbols)  which  define x. For 

example,  if A is the  set .of real  numbers  between 2 and 5, i.e., x = {x I 
2 < x < 5}, then A = (x I 2 < X 5 5) is a fuzzy  set of real  numbers  which 

are  approximately  between 2 and 5. Similakly, A = {x I x = - 5) or  simply 
5 will  denote  the  set of numbers  which  are  approximately  equal  to 5 .  The 

symbol - will  be  referred  to  as a fuzzifier. 

” - 
“3 

... 

We  turn  next  to  the  definition  of  several  basic  concepts 

which  we  shall  need  in  later  sections. 

Normality: A fuzzy  set A is  normal  if  and  only  if  Sup pA(x) = 1, that  is, 

the  supremum of vA(x) over X is  unity. A fuzzy  set is subnormal if it is 

not  normal. A non-empty  subnormal  fuzzy  set  can  be  normalized  by 

dividing  each pA(x)  by  the  factor S;p  pA(x).  (A fuzzy  set A is  empty  if 

and  only  if p,(x) i 0. ) 

x 
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Equality: Two fuzzy  sets  are  equal,  written as A = B, if and  only if 

- VA - VB, that  is, vA(x) = pB(x) for  all x in X. (In the  sequel,  to 

simplify  the  notation  we  shall  omit  the  argument x when an equality or 

inequality  holds  for  all  values  of  x in X.) 

Containment: A fuzzy  set A is  contained or is  a  subset  of a fuzzy set  

B, written  as A C B ,  if  and  only  if 1-I < PB.  In  this  sense,  the  fuzzy Eat 

of  very  large  numbers  is  a  subset  of  the  fuzzy  set  of  large  numbers. 

A -  

Complementation: A' is  said  to  be  the  complement  of A if  and  only  if 

PA' = - pA. For example,  the  fuzzy  sets: A =' {tall  men}  and A' = 

{not  tall  men)  are  complements  of  one  another  if  the  negation  "not" is 

interpreted  as  an  operation  which  replaces 1-1 (x) with l-vA(x)  for  each 

x  in X. 

A 

Intersection:  The  intersection  of A and B is  denoted  by A n B  and is de- 

fined  as  the  largest  fuzzy  set  contained  in  both A and B. The  membership 

function  of A rl B is given  by 

where  Min(a,b) = a  if  azb  and  Min(a,b) = b if  a>b.  In  infix  form,  using 

the  conjunction  symbol A in  place of Min,(3)  can be  written  more  simply  as 

a 



The not ion of i n t e r sec t ion   bea r s  a close r e l a t i o n   t o   t h e  

not ion of the  connective "and."  Thus, i f  A is t h e  class of t a l l  men and 

B is  the  class of f a t  men9 then A n B i s  the  class of men  who are both t a l l  

and fat .  - 

Comment, It should  be  noted.   that   our   ident i f icat ion of "and" with (4) 

imp l i e s  t h a t  we are i n t e r p r e t i n g  "and" i n  a "hard"  sense,   that  is, we do 

not   a l low any tradeoff  between p (x) and p (x) so long as p (x) > ~ . l '  (x). 

For example, i f  pA(x) = 0.8 and pB(x) = 0.!j9 then pA n ,(x) = 0.5 so long 

as pA(x) 0.5. I n  some cases,  a s o f t e r   i n t e r p r e t a t i o n  of "and'! vhich 

corresponds  to   forming  the  a lgebraic   product  of pA(x)  and pB(x) - r a t h e r  

than  the  conjunct ion 1-1 (x) A 1-1 (x) - may be   c lose r   t o   t he   i n t ended  mean- 

ing  of "and." From the  mathematical as well as p rac t i ca l   po in t s   o f  view, 

the   i den t i f i ca t ion   o f  "and" with A is p re fe rab le   t o  its i d e n t i f i c a t i o n  

A  B  A  B 

A B 

with  the  product,   except where A clear ly   does  not   express   the  sense i n  

which  one  wants "and" t o   b e   i n t e r p r e t e d .   F o r   t h i s   r e a s o n ,   i n   t h a t   f o l -  

10~7s "and" will be  understood  to   be a hard "and" u n l e s s   e x p l i c i t l y   s t a t e d  

t h a t  i t  should  be  interpreted as a s o f t  "and"(in the   s ense  of  corre- 

sponding to   t he   a lgeb ra i c   p roduc t  of  membership func t ions) .  

Union: The not ion of the  union of A of B is dua l   t o   t he   no t ion  of i n t e r -  

sec t ion .  Thus, the  union  of A and B, denoted as A u B ,  i s  def ined as t h e  

smallest fuzzy set containing  both A and B.  The membership function  of 

A u B is  given  by 
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where  Max  (a,b) = a if a b and  Max  (a,b) = b if a < b. In  infix  form, 

using  the  disjunction  symbol vein place of Max,  we  can  write (5) more 

simply  as 

As  in  the  case of the  intersection,  the  union  of A and B 

bears a close  relation  to  the  connective  "or. Thus, if A = (tall  men) 

and B = (fat men), then A u B = (tall or fat men}. Also, we  can  differen- 

tiate  between a hard  "or:'1,  which  corresponds  to (6) ,  and a soft  "or", 

which  corresponds  to  the  algebraic  of A and  B,  which  is  denoted  by 

A e B and  is  defined  by (9). 

It  is  easy  to  verify  that u and  are  related  to  one 

another  by  the  identity 

Algebraic  product: The algebraic  product  of A and B is denoted  by A3 and 

is  defined  by 

Algebraic sum: The  algebraic  of A and B is  denoted  by A +3 B and  is 

defined  by 

10 



It is  easy to verify  that 

1 

A 0 B = (A'B') 

Comment. .It should  be  noted  that  the  operations v and II are  associative 

and  distributiverover  one$nother. on the  other  hand, e (product)  and +3 (sum) are 

associative  but  not  distributive, 

Convexity  and  concavity.  Let A be a fuzzy  set in X = R". Then A is 

convex  if  and  only If f o r  every  pair of points (x,y) i n  X, the  membership 

. for 0 X 51. Dually, A is concave  if  its  complement A' is  convex.  It 

I s  easy  to show that if A and B are  convex, so is A!%. Dually,  if A and 

B are  concave, so is A m ,  

Relation. A fuzzy  relation, R, in the  product  space XxY = { (x,y) 1, x E X, 

y E Y, is a fuzzy  set i n  X x Y characterized  by a membership  function % 

which  associates  with  each  ordered  pair  (x,y) a grade of membership 

pR(x,y) in R. More  generally,  an  n-ary  fuzzy  relation  in a product  space 

11 



x = x X X X.. . .xx" is a fuzzy  set  in X characterized  by an n-variate 
membership  function %(x1, . . ., x,), xi E X , i = 1, . . ., n. 

1 2  

i 

Example.  Let X = Y = R1, where R is  the  real  line (-my ). Then  x>>y 
is a fuzzy  relation in R . A subjective  expression  for % in  this  case 
might  be:  %(x,y) = 0 for  x<y;  uR(x,y) = (1+ (x-y) ) for  x>y. 

1 

2 

-2 -1 - 

Fuzzy  sets  induced  by  mappings.  Let f :X+Y be a mapping  from X = {x)  to 

Y = cy), with  the  image  of x under f denoted  by y = f (x). Let A be a 

fuzzy  set  in X. Then, the  mapping f induces a fuzzy  set B in Y whose 

membership  function  is  given  by 

where  the  supremum is taken  over  the  set of points f (y) in X which  are 

mapped  by f into  y. 

-1 

Conditioned  fuzzy  sets: A fuzzy  set B(x) in Y = cy)  is  conditioned on x 

if  its  membership  function  depends on x as a parameter.  This  dependence 

is  expressed  by  uB(ylx) . 

Suppose  that  the  parameter x ranges  over a space X, so 

that  to  each x in X corresponds a fuzzy  set B ( x )  in Y. Thus, we have a 

mapping - characterized  by pB (y  Ix) - from X to the  space of fuzzy  sets 
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i n  Y. Through t h i s  mapping, any  given  fuzzy set A i n  -X induces a '  fuzzy 

set B i n  Y which is defined by 

where ll and y denote  the membership func t ions  of A and B, respec t ive ly .  

In terms of A and v (13) may be   wr i t t en  more simply as 

A B 

Note t h a t  this equation is analogous - but   no t   equiva len t  - t o   t h e  ex- 

p res s ion   fo r   t he   marg ina l   p robab i l i t y   d i s t r ibu t ion  of t h e   j o i n t   d i s t r i b -  

t i o n  of two random variables ,   wi th   pB(y ]x) playing a role   analogous to 

t h a t  of a cond i t iona l   d i s t r ibu t ion .  

Decomposability: L e t  X = {x), Y = {y)  and l e t  C be  a fuzzy set i n  t h e  

product  space Z = XxY defined by a membership function  yc(x,y).  Then C 

is decomposable a long  X and Y i f  and only i f  C admits  of  the  represen- 

t a t i o n  

c = A ~ B  

or equiva len t ly  



where A and B are fuzzy sets with membership funct ions  of   the  form 

pA(x) and pg(y) ,   respect ively.  (Thus, A and B are cyl indr ica l   fuzzy  

sets i n  Z.) The same ho lds   fo r  a fuzzy set i n   t h e   p r o d u c t  of  any f i n i t e  

number of spaces. 

Probabi l i ty  of  fuzzy  events: L e t  P be a p robab i l i t y  measure  on Rn. A 

fuzzy eventlo A i n  Rn is def ined  to   be a fuzzy  subset A of Rn whose mem- 

bership  function, llA, is  measurable. Then, t h e   p r o b a b i l i t y  of A is de- 

f ined by the  Lebesgue-St ie l t j  es i n t e g r a l  

Equivalently,  

where E denotes  the  expectation  operator.   In  the  case of a non-fuzzy set ,  

(16) reduces to the   convent iona l   def in i t ion  of the   p robabi l i ty   o f  a non- 

fuzzy  event. 

This  concludes  our  brief  introduction  to some of the   bas ic  

concepts   re la t ing  to   fuzzy sets. In   the   fo l lowing   sec t ion ,  we s h a l l   u s e  

these  concepts as a bas i s   fo r   de f in ing   t he   cen t r a l   no t ions  of goal ,  con- 

s t r a i n t  and d e c i s i o n   i n  a fuzzy  environment. 
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3. Fuzzy  Goals,'Constraints  and  Decisions 

In  the  conventional  approach  to  decision-making,  the 

principal  ingredients  of a decision  process  are (a) A set  of  alterna- 

tives;  (b) a set  of  constraints  on  the  choice  between  different  alter- 

natives;  and  (c) a performance  function  which  associates  with  each 

alternative  the  gain  (or  loss)  resulting  from  the  choice  of  that  alter- 

native . 

When t7e view a decision  process  from  the  broader  perspec- 

tive  of  decision-making  in a fuzzy  environment, a different  and  perhaps 

more natural  conceptual  framework  suggests  itself.  The  most  important 

Eeature of this  framework  is  its  symmetry  with  respect  to  goals and 

constraints - a symmetry,  which  erases  the  differences  between  them  and 
makes it possible  to  relate  in a relatively  simple  way  the  concept  of a 

decision  to  those  of  the  goals  and  constraints  of a decision  process. 

r 

More  specifically,  let X = {x) be a given  set of alterna- 

tives.  Then, a fuzzy  goal  or  simply a &, G, in X will  be  identified 

with a given  fuzzy  set G in X. For  exampleg  if X = R' (the  real  line), 

then  the  fuzzy  goal  expressed in words as I' x should  be  substantially 

larger  than 10" might  be  represented  by a fuzzy  set in R whose  member- 

ship  function  is  (subjectively)  given  by 

1 

I 

PG(X) = 0 , x<10 
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= (1 + (x-10) ) , X L l O .  -2 -1 

Similarly,  the  goal "x should  be  in  the  vicinity of 15"  might  be  repre- 

sented  by a fuzzy  set  whose  membership  function  is  of  the  form 

Note  that  both of these  sets  are  convex  in  the  sense of (11). 

In the  conventional  approach,  the  performance  function 

associated with a decision  process  serves  to  define a linear  ordering 

on  the  set  of  alternatives.  Clearly,  the  membership  function, pG(x), 

of a fuzzy  goal  serves  the same purpose  and, in fact,  may  be  derived 

from a given  performance  function  by a normalization  which  leaves  the 

linear  ordering  unaltered. In effect,  such  normalization  provides a 

common  denominator f o r  the  various  goals  and  constraints  and  thereby 

make's it possible  to  treat  them  alike.  This,  as we shall  see,  is  one 

of the  significant  advantages of regarding  the  concept  of a goal - rath- 
er  than  that  of a performance  function - as  one of the  principal  compo- 
nents of a conceptual  framework  for  decision-making i n  a fuzzy  environ- 

ment. 

* 

* 
Assuming,  of  course,  that p takes  values  in a linearly  ordered  set. G 



T -  
I'. 

In  a  similar  manner,  a  fuzzy  constraint  or  simply  a 

constraint, C, in X is  defined  to  be  a  fuzzy  set  in X. For  example,  in 

R , the  constraint "x should  be  approximately  between 2 and lo," could 

be  represented  by  a  fuzzy  set  whose  membership  function  might  be  of  the 

f o m  

1 

where  a  is  a  positive  number  and  m  is  a  posftive  even  integer  chosen  in 

such a way  as  to  reflect  the  sense  in  which  the  approximation  to  the  in- 

terval [2,10] is to  be  understood.  For  example,  if  we  set  m = 4 and  a = 

5-4, then  at  x = 2 and  x = 10 we  have  approximately 1~ (x) = 0.8, while 

at x = 1 and  x = 11, IJ (x) = 0.5; and  at  x = 0 and  x = 12, uc(x)  is  ap- 

proximately  equal  to 0 . 3 .  

C 

C 

An  important  aspect of the  above  definitions  of  the  con- 

cepts  of  goal  and  constraint  is  that  both  are  defined  as  fuzzy  sets  in 

the  space  of  alternatives  and  thus,  as  will  be  elaborated  upon  below, 

can  be  treated  identically  in  the  formulation of a decision.  By  con- 

trast,  in  the  conventional  approach  to  decision-making,  a  constraint 

set  is  taken to be  a  non-fuzzy  set  in  the  space  of  alternatives X, where- 

as  a  performance  function  is  a  function  from X to  some  other  space. 

Nevertheless,  even  in  the  case of the  conventional  approach,  the  use  of 

Lagrangian  multipliers  and  penalty  functions  makes  it  apparent  that 

there  is  an  intrinsic  similarity  between  performance  functions  and  con- 
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straints.  This  similarity - indeed  identity - is  made  explicit in our * 

formulation, 
I 

As an  illustration,  suppose  that  we  have  a  fuzzy  goal G 

and  a  fuzzy  constraint C expressed  as  follows: 

G: x  should  be  substantially  larger  than 10, with pG(x) 

given  by (17) 

c :  x  should  be  in  the  viclnity  of 15, with p (X) ex- C 

pressed  by (18). 

Note  that  G  and C are  connected  to  one  another  by  the 

connective e. Now, as  was  pointed  out  in  Sec.2,  corresponds  to 
the  intersection  of  fuzzy  sets.  This  implies  that  in  the  example  under 

consideration  the  combined  effect of the  fuzzy  goal  G  and  the  fuzzy 

constraint C on the  choice of alternatives  may  be  represented  by  the 

intersection G n C .  The  membership  -function of the  intersection is given 

by 

or  more  explicitly 

(x) = Min ((1 + (x-10) ) , (1 + (x - 15) ) ) for x > 10 -2 -1 -4 -1 
l’lGr?C: - 

*For a very  thorough  discussion of these  points  see  Ref. 12. 
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Note  that G n C  is a convex  fuzzy  set  since  both G and C are  convex 

fuzzy  sets. 

Turning  to  the  concept  of  a  decision,  we  observe  that, 

intuitively,  a  decision  is  basically  a  choice  or  a  set  of  choices  drawn 

from  the  available  alternatives.  The  preceding  example  suggests  that  a 

fuzzy  decision  or  simply  a  decision  be  defined  as  the  fuzzy  set  of  alter- 

natives  resulting  from  the  intersection  of  the  goals  and  constraints. 

We  formalize  this  idea  in  the  following  definition. 

Definition.  Assume  that  we  are  given  a  fuzzy  goal G and  a  fuzzy  con- 

straint C in  a  space of alternatives X. Then, G and C combine  to  form  a 

decision, D, which  is  a  fuzzy  set  resulting  from  intersection  of G and C. 

In  symbols, 

D = G n C  

and  correspondingly 

Lf) = ?JG A PC 

The  relation  between G, C and D is  depicted  in  Fig.1. 
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More  generally,  suppose  that  we  have n goals G 190.09 G n 
and m constraints C 190.e3 Cm. Then,  the  resultant  decision  is  the  inter- 

section  of  the  given  goals G ~ 9 ~ ~ ~ 9  G and  the  given  constraints  C1OO..s n 
Cm.  That  is, 

D = ~~n G~ n... n G n cp c2n o o o  n cm n 

and  correspondingly 

Note  that  in  the  above  definition  of a decision,  the 

goals  and  the  constraints  enter  into  the  expression  for D in  exactly 

the  same  way.  This  is  the  basis  for  our  earlier  statement  concerning 

the  identity  of.the  roles  of  goals  and  constraints  in  our  formulation 

of  decision  processes  in a fuzzy  environment. 

Coment. The  definition  of a decision  as  the  intersection  of  the  goals 

and  constraints,  reflects our interpretation of "and" in the  "hard" 

sense  of (4) If the  interpretation  of  "and"  is  left  open,  we  shall 

say  that a decision - viewed  as a fuzzy  set - is a confluence of the 
goals  and  the  constraints.  Thus,  "confluence"  acquires  the  meaning  of 

"intersection"  when  "and"  is  interpreted  in  the  sense of (4); the  mean- 

ing  of  "algebraic  product"  when  "and"  is  interpreted  in  the  sense  of 

20 



(8); and may be  assigned  other  concrete meanings when a need f o r  a spe- 

c i a l   i n t e r p r e t a t i o n  of "and" arises. I n   s h o r t ,  a broad   def in i t ion  of the  

concept of decis ion may be   s ta ted  as: 

Decision = Confluence  of  Goals and Constraints  

As an   i l lus t ra t ion   o f   (21) '  we sha l l   cons ider  a very 

simple example i n  which X = €1'2 $ o .  ,101  and G19 G2, C and C2 are de- 

f ined  below. 

l 

2 3 4 5 6 7 8 9 10 
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0 
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0.1 

0 .'2 

Forming the  conjunction of p 
G1 $ 'G2 ' 'C1 and  pc we obta in   the  

2 
fol lowing  table   of   values   for  pD (x) 

X I 1  2 3 4 5 6 7 8 9 10 

0 0.1 0.4 0.7 0.8 0.6 0.4 0.2 0 0 

Thus the d e c i s i o n   i n   t h i s   c a s e  is  the  fuzzy set 

D = {(2,O.1),(3,O.4),(4,O.7)9.(5,O.8)9(6yO~6)y(7,O~4)~(8,O~2~~ 
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I 

Note  that  no x in X has  full  (that  is,  unity  grade)  membership  in D. 

This  reflects, of course,  the  fact  that  the  specified  goals  and  con- 

straints  conflict  with  one  another,  ruling  out  the  existence of an 

alternative  which  fully  satisfies  all  of  them. 

The  concept  of a decision  as a fuzzy  set  in  the  space  of 

alternatives  may  appear  at  first  to  be  somewhat  artificial.  In  fact  it 

is  quite  natural,  since a fuzzy  decision  may  be  viewed  as  an  instruction 

whose  fuzziness  is a consequence  of  the  imprecision  of  the  given  goals 

and  constraints.  Thus,  in  our  example,  G1, G2, C and C may  be  respec- 

tively  expressed  in  words  as: ''x should  be  close to 5," "x  should  be 
1 2 

close  to 3 ,"  "x  should  be  close  to 4" and  "x  should  be  close  to 6 " .  The 

decision,  then,  is  to  choose x to be  close  to 5. The  exact  meaning  of 

11 close"  in  each  case  is  given  by  the  values of the  corresponding  member- 

ship  function. 

How  should a fuzzy  instruction  such  as  "x  should  be  close 

to 5" be  executed?  Although  there  does  not  appear  to  be a universally 

valid  answer to questions  of  this  type,  it  is  reasonable  in  many  in- 

stances to choose  that x or  x's  which  have  maximal  grade of membership 

in D. In  the  case  of  our  example,  this  would  be x = 5. 

* 

* The  execution of fuzzy  instructions  is  discussed  in  Ref. 3 .  
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More  generally,  let  D  be  a  fuzzy  decision  and  let  D  be M 

its  core,  that is, the  non-fuzzy  set  of  points  in X at  which  the  maximum 

of  pD(x)  over X, if  it  exists,  is  attained.  Then,  we  shall  say  that  any 

x  in  DM  constitutes  a  maximizing  decision.  In  other  words,  a  maximizing 

decision  is  simply  any  alternative  in X which  maximizes pD(x),  e.g., x = 5 

in  the  foregoing  example.  Note  that  in  Rn a sufficient  condition  for  the 

- 

uniqueness  of  a  maximizing  decision  is  that  D  be  a  strongly  convex  fuzzy 

set. 
* 

In  defining  a  fuzzy  decision D as  the  intersection - or 
more  generally,  as  the  confluence - of  the  goals  and  constraints,  we  are 
tacitly  assuming  that  all  of  the  goals  and  constraints  that  enter  into 

D  are, in a  sense, of equal  importance.  These  are  some  situations,  how- 

ever,  in  which  some  of  the  goals  and  perhaps  some  of  the  constraints  are 

of greater  importance  than  others.  In  such  cases, D might be expressed 

as a convex  combination of the  goals  and  the  constraints,  with  the 

weighting  coefficients  reflecting  the  relative  importance  of  the  con- 

stituent  terms.  More  explicitly,  we  may  express 1-1 (x)  as D 

n m 

* A fuzzy set is  strongly  convex  if  it  is  convex  and  its  membership 
function  is  unimodal. 
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where  the Q and 8 .  are membership  functions  such  that i J 

n m 

i=1 j =1 
x . Qi(X) + c Bj(X) = 1 

Subject  to  this  constraint,  then,  the  values  of a (x)  and 8 .  (x)  can  be 

chosen  in  such a way  as  to  reflect  the  relative  importance  of  G1, ..., G 
and  C1, ..., C In  particular,  if m = n = 1, it  is  easy  to  verify  that 

(22) can  generate  any  fuzzy  set  which  is  contained  in G u C and  contains 
GnC. Note  that (22) resembles  the  familiar  artifice of transforming a 

vector-valued  criterion  into a scalar-valued  criterion  by  forming a linear 

combination  of  the  components of the  vector-valued  objective  function. 

i J 

n 

m' 

So far,  we  have  restricted  our  attention to situations  in 

which  the  goals  and  the  constraints  are  fuzzy  sets  in X, the  space  of 

alternatives. A more  general  case  which  is  of  practical  interest  is  one 

in  which  the  goals  and  the  constraints  are  fuzzy  sets  in  different 

spaces.  Specifically,  let f be a mapping  from X = {x) to Y = {y), with 

x representing  an  input  (cause)  and y,  y = f(x), representing  the  corre- 

sponding  output  (effect). 

Suppose  that  the  goals  are  defined  as  fuzzy  sets G 1'""' 
G in Y while  the  constraints  C1, ..., C are  defined  as  fuzzy  sets  in X. 

Now, given a fuzzy  set G in Y, one  can  readily  find a fuzzy  set G in 
n  m * 

i  i 
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X which  induces  Gi  in Y. Specifically,  the  membership  function of Gi 
* 

is  given  by  the  equality 

, i = l,...,n 

The  decision D; then,  can  be  expressed  as  the  intersection 

of G1 , . . . ,G  and C1,. . . , C Using (23), we  can  express 1-1 (x) more  ex- n m* D 
plicitly  as 

* * 

where  f: X-tY. In this  way,  the  case  where  the  goals  and  the  constraints 

are  defined  as  fuzzy  sets  in  different  spaces  can  be  reduced  to  the  case 

where  they  are  defined  in  the  same  space.  We  shall  find ( 2 4 )  of  use  in 

the  analysis  of  multistage  decision  processes  in  the  following  section. 

4 .  i Multistage .- ~ ~ Decision  Processes 

As an  application  of  the  concepts  introduced  in  the  pre- 

ceding  sections,  we  shall  consider  a  few  basic  types of problems  involv- 

ing  multistage  decision-making  in a fuzzy  environment.  It  should  be 

stressed  that,  in  what follows, our  main  purpose  is  to  illustrate  the  use 

of  the  concepts  of  fuzzy  goal,  fuzzy  constraint  and  fuzzy  decision,  rather 

than to develop  a  general  theory  of  multistage  decision  processes  in 
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which  fuzziness  enters  in  one  way  or  another. 

For  simplicity  we  shall  assume  that  the  system  under  con- 

trol, A, is  a  time-invariant  finite-state  deterministic  system  in  which 

the  state,  x  at  time  t, t = 0,1,2,..., ranges  over  a  finite  set X = 

{o1,.. .,u 1 ,  and  the  input ut, ranges  over  a  finite  set U = {al,.. . ,a 1 .  

The  temporal  evolution  of A is  described  by  the  state  equation 

ty 

n  m 

x = f  (xt, Ut) , t = 0,1,2,. . . t+l (25) 

in  which  f  is  a  given  function  from XxU to X. Thus, f(x u ) represents t' t 

the  successor  state  of  x  for  input  u  Note,  that  if  f  is  a  random 

function,  then A is  a  stochastic  system  whose  state  at  time  t+l is a 

probability  distribution  over X, P ( x ~ + ~  u ), which  is  conditioned 

t t' 

I Xt, t 
on  x  and  u  Analogously,  if  f  is  a  fuzzy  function,  then A is  a  fuzzy 

system  whose  state  at  time t + 1 is  a  fuzzy  set  conditioned  on  x  and  u t ty 

which  means  that  it  is  characterized  by a membership  function of the  form 

~ ( x ~ + ~  I xt,ut).  Since  we  will  not  be  concerned  with  such  systems  in 
the  sequel,  it  will  be  understood  that  f  is  non-fuzzy  unless  explicitly 

t t' 
2 

* 

stated to the  contrary. 

We  assume  that  at  each  time t the  input  is  subjected  to 

a  fuzzy  constraint Ct , which  is  a  fuzzy  set  in U characterized  by  a 

membership  function 1-1 (u ). Furthermore, we assume  that  the  goal  is  a t t  

* It should  be  noted  that  when  we  speak  of  a  fuzzy  environment,  we  mean 
that  the  goals  and/or  the  constraints  are  fuzzy,  but  not  necessarily  the 
system  which  is  under  control. 
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fuzzy  set GN in X, which  is  characterized  by  a  membership'  function 

p ,(x ), where N is the  time  of  termination  of  the  process.  These 
Gh 
assumptions  are  common  to  most  of  the  problems  considered  in  the  sequel. 

1': J Problem 1. In this  case,  the  system is assumed  to  be  characterized  by 1; 
/:I: (25), with  f a given  non-random  function.  The  termination  time N is 
g 
2 assumed  to  be  fixed  and  specified,  The  initial  state,  xo, is assumed 

to  be  given.  The  problem  is  to  find a maximizing  decision. 

Applying (20), the  decision - viewed  as a decomposable 
I '8 

fuzzy  set' in U x U X ... X U, may be expressed at once as 
1 
;i 

explicitly,  in  terms  of  membership  functions,  we  have 

where % is expressible as a function  of x. and  u0,. . ., uK1  through  the 
iteration  of (25). 
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Our  problem,  then, is to  find a sequence of inputs 

u which  maximizes p as given  by (27). As is  usually  the case U 
0’”” N-1 D 
in  multistage  processes,  it is expedient  to  express  the  solution In the 

f o m  

u = IT (x,) , t = 0,1,2,. . . ,N-1 , t t 

where T is a policy  function.  Then,  we  can  employ  dynamic  programming 

to give  us  both  the IT and  the  maximizing  decision u 
t 

M M 
t * 9 uN-l’ 

More  specifically,  using ( 2 6 )  and (25), we  can  write 

Now,  if y is a constant  and y is  any  function  of  uGl, 

we  have  the  identity 

Consequently,  (28)  may be rewritten as 
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where 

’ !  

may  be  regarded as the  membership  function of a  fuzzy goal at  time t = 

N-1 which  is  induced  by  the  given  goal  GN  at  time t = N. 

On  repeating  this  backward  iteration,  which  is  a  simple 

instance  of  dynamic  programming, we obtain  the  set of recurrence  equations 

which  yield  the  solution  to  the  problem.  Thus,  the  maximizing  decision 

M 
U 
Of”” UN-19 is  given  by  the  successive  maximizing  values  of %-v in 

(311, with s-v defined  as  a  function of x N.-V ’ V = l,..., N. 
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Example.  As a simple  illustration,  consider a system  with  three  states 

u cJ2, u and  two  inputs a and a2. Assume N = 2 for  simplicity.  Let 

the  fuzzy  goal  at  time t = 2 be  defined  by a membership  function 

whose  values  are  given  by 

1, 3 1 

G2 

Furthermore,  let  the  fuzzy  constraints  at t = 0 and t = 1 be  defined 

respectively  by 

The  state  transition  table  which  defines  the  function f in (25) is 

assumed  to  be 

a 1 U U 3 1 

a 2 *2 U 3 

Using (30) ,  the  membership  function  of  the  fuzzy  goal 

induced  at t = 1 is  found  to  be 
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and the Corresponding  maximizing  decision is given  by 

Similarly, for t = 0 

and 

Thus, i f  the  initial  state  (at t = 0) is GI, then  the  maximizing  deci- 

sion is cc ,a and  the  corresponding  value of )J is 0.8. 2 1  G2 

Next,  we  turn  to  a  more  general  multistage  decision 

process  in  which  the  system  under  control is stochastic,  while  the  goal 

and  the  constraints  are  fuzzy. 

5 .  Stochastic  Systems  in a Fuzzy  Environment 

As in  the  proceding  problem,  assume  that  the  termination 

time N is fixed  and  that  an  initial  state xois specified.  The  system 

is  assumed  to  be  characterized by a conditional  probability  function 

P(X~+~ (xt,ut).  The  problem  is t o  maximize  the  probability of attainment 

31 
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of  the  fuzzy  goal  at  time N, subject  to  the  fuzzy  constraints C , ..., 
cN-l 

0 

If  the  fuzzy  goal G is  regarded  as  a  fuzzy event'' in X, N 

then  the  conditional  probability  of  this  event  given XN-1 s-1 is 
expressed  by 

where E denotes  the  conditional  expectation  and 1-1 is  the  membership 

function of the  given  fuzzy  goal. 
G 

We  observe  that  (32)  expresses  Prob  (GN I xNml, or, 

equivalently, E lJ (x ), as a function of and s-~, just as in  the 

preceding  problem 1-1 N(xN) was  expressed  as  a  function of 
GN 

G 
3 - 1  and 

via (25). This implies  that E 1-1 N(xN) can  be  treated  in  the  same 
G 

way as N ( ~ N >  was  treated  in  the  non-stochastic  case,  thus  making  it 

possible  to  reduce  the  solution of the  problem  under  consideration  to 
G 

that of the  preceding  problem. 

More  specifically,  the  recurrence  equations  (31)  are 

replaced by 
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where, as before ,  1-1 (x ) . deno tes   t he  membership funct ion  of   the 

fuzzy  goal a t  t = N - V induced by the  fuzzy  goal  a t  t = N - v + 1 , 
V = 1, ..., N . These  equations  yield a s o l u t i o n  t o  the  problem, as is  

i l l u s t r a t e d  by the  fol lowing example. 

G N-V P-v 

Example. As i n   t he   p reced ing  example, we assume that   the   system  has  

th ree  states u2, d and two inputs  a a N i s  assumed t o  be  equal 

t o  2 ,  and the   p robabi l i ty   func t ion  p ( x  u ) is  given by the  follow- 

ing  two tables,   corresponding  to  ut  = al, and u = a respect ively.  

1’ 3 1.’ 2’ 

t+JXt’ t 

t 2’ 

I. 

O2 

“3 

u = a  t 1  

Ol 2 u3 U 

0.8 0.1  0.1 

0 0.1 0.9 

0.8 0.1  0,1 

11. 

x% 

O2 

u3 

u = a  t 2  

u1 - 2 u3 U 

0.1 0.9 0 

0.8 0.1 0.1 

0.1 0 0 . 9  

The entries i n  these t a b l e s  are the   va lues  of P ( X ~ + ~  Ixt ,ut) .  
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Thus , t he   en t ry  0.8 i n   t h e   p o s i t i o n  (o1, a2) . i n   t h e  first t a b l e   s i g n i f i e s  

t h a t  i f  the  system i s  i n  s ta te  0 a t  time t and  input cx is appl ied,   then 1 1 

with  probabi l i ty  0.8 t h e  s ta te  a t  t i m e  t + 1 w i l l  be  a2. 

The fuzzy  goal a t  t = 2 is assumed t o   b e   t h e  same as i n  

the  preceding example, t h a t  i s  

Likewise,   the   constraints  are assumed t o   b e   t h e  same. Thus 

Using ( 3 3 ) ,  we compute Ep 2(x2) as a func t ion  of x and 
G 1. 

u1 Tabula t ing   the   resu l t s ,  we have 

a2 I 0.93 0.42 0.75 

Next, using (33) with v = 1 and  computing p (x ) w e  
G1 

obtain 
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which  correspond  to  the  following  values of the  maximal  policy  function 

! The  final  iteration  with v = 2 yields 

a 1 0.62 0.62 0.62 

a 2 0.8 0.62 0.60 

The  values of l~ in (61) represent  the  probabilities of 
GO 

attaining  the  given  goal  at t = 2 starting  with 0 , a2 and 0 , respec- 

tively,  assuming  that  the  inputs  are  determined  by  the  maximal  policy 
3 

function IT that  is,  u =  IT^ (x,) ( t = 0, 1, xt: = 01, 02, a,, ut = 

CL  CL ) whose values are  given in (60) and ( 6 2 )  

t’  t 

1’ 2 

I: . 

Comment. It should be noted  that  when  the  fuzzy  goal  at  time N is 

defined in such  a  way  that  the  probability  of  attaining  it  is  small 

for all values  of %-1 and  u  it  may  be  necessary  to  normalize  the N-1 ’ 

35 



fuzzy  goal  induced  at  time N-1 before  finding  its  intersection  with  CN-l, 

for  otherwise  the  decision  would  be  unifluenced  by  the  constraints. To be 

consistent,  such  nomalization  may  have  to  be  carried  out  at  each  stage  of 

the  decision  process.  Although we shall  not  dwell  further  upon  this  aspect 

of the  problem  in  the  present  paper,  it  should  be  emphasized  that  it  is  by 

no  means  a  trivial  one  and  requires  a  more  thorough  analysis. 

6 .  Systems  With  Implicitly  Defined"Te-rgination  Time 

In the  preceding  cases, we  have  assumed  that  the  termi- 

nation  time, N, is  fixed  a  priori.  In  the  more  general  case  which we 

shall  consider  in  this  section,  the  termination  time  is  assumed  to  be 

determined  implicitly  by  a  subsidiary  condition  of  the  form x&C, where 

T is a  specified  non-fuzzy  subset of X termed  the  termination set. Thus, 

the  process  terminates  when  the  state of the  system  under  control  enters, 

for  the  first  time,  a  specified  subset  of  the  state  space.  In  this  case, 

the  goal  is  defined  as  a  fuzzy  set G in T , rather  than  in X. 

* 

More  concretely,  assume  that  the  system  under  control, A, 

is  a  deterministic  system  characterized  by  a  state  equation  of  the  form 

X t+l t' t = f(x u ) , t = 0,1,2,. .. ( 3 4 )  

where x ranges  over X = {u1, . . ,G ,O u 1, in  which  T = {at+l,. . . , 
0 }>constitutes  the  termination  set. As before,  f  is  assumed  to be a 

*In  its  conventional  (non-fuzzy)  formulation, this case  plays  an  important 
role  in  the  theory of optimal  control  and  Markoffian  decision  processes. 
Some of the  more  relevant  papers  on  this  subject  are  cited  in  the  list of 
references. 
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given  function  from XxU to X, where U = {al, ..., am} is the  range  of 
u t = 0,1,2,. . . . Note  that  if (Si is an  absorbing  state,  that is, a 

state  in T, then  we  can  write  f (0 i, aj) = ai for  all a in U. 
t’ 

j 

The  fuzzy  goal  is  assumed  to  be a subset  of T character- 

ized  by  a  membership  function 1-1 (x ), where  N is the  time  at  which x ET, 

with  xt$ T for  t < N . As for  the  constraints  on  the  input,  we  assume  for 

simplicity  that  they  are  independent  of  time  but  not  necessarily  the 

state,  Thus,  if A is  in  state d at  time  t,  then  the  fuzzy  constraint 

on u is assumed  to  be  represented  by a fuzzy  set C(Oi)  (orC(xt)) in U 

which  is  conditioned  on ai. The  membership  function of this  set will 

be  denoted  by  vC(utlxt). 

G N  t 

i 

t 

Let  x  be  an  initial  state  in  TI,  where T’ = {dl,..,,dk} 
0 

is the  complement  of  T  in X. To each  such  initial  state  will  correspond 

a  decision, D(xo),  given  by 

where  the  successive  states  x ..., XN-~, 5 can  be  expressed  as  iter- 
ated  functions of x. and uo, ..., %-1 through  the  state  equation 

( 3 4 ) .  Thus 

1’ 
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. . . . . . .  e . . . . . . . . . .  

Note  that,  as  in (26), the C’s in (35) should  be  regarded 

as  fuzzy  sets  in  the  product  space U XU x...x Ux T . Another  point 
that  should  be  noted  is  that D(x 1 is uniquely  determined  by (35) for 

each x with  the  understanding  that  D(xo)  is  empty  if  there is no 

finite  sequence  of  inputs uo, ...? u  which  takes  the  initial  state 
x  into T. In  this  event,  we  shall  say  that T is not reachable  from  the 

initial  state. 

0 

0’ 

N-1 

0 
\ 

From (35), we  can  readily  derive  a  simpler  implicit  equa- 

tion  which  is  satisfied  by D(xo). Specifically,  in  virtue of the  time- 

invariance of A and  the  time-independence  of  the  goal  and  constraint 

sets, (35) implies 

for  t = 0,192¶. .. . In particular, 

and  hence (37) can  be  written  as 
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or,  using ( 3 4 ) ,  

which  is  the  desired  implicit  equation.  Expressed  in  terms of the  member- 

ship  functions of the  sets  in  question,  this  equation  assumes  the  follow- 

ing  form  (for  t = 0 )  

where  the  termination  time N is also  a  function  of x. and uo, ul, u2, ... 
through  the  state  equation ( 3 4 )  and  the  termination  condition  xN E T , 

with 6 T, ..., %-1 6 T . 

Now suppose  that  the  successive  inputs  u  uls * * . ,  u N-1 
are  determined  by  a  stationary  (time-invariant)  policy  function IT , IT : 

T' +v , which  associates  with  each  state x in T' an  input  u  which 

should  be  applied  to A when  it  is  in  state x Thus, 
t t 

t' 

Since uo, ..., u  are  determined by x and n through N-1 0 

( 4 2 )  and  the  state  equation  (34),  the  membership  function  of D(x ) 

'can  be  written as p (x !IT>. Similarly, pc(u0 I x,) can  be  written  as 

vc(n(xo 1 /xo 1, and pD(u1, . , %-llf(xo,  uo)> as v,-,(f(xo,.rr(xo))IIT) 

0 

D o  
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With  these  substitutions, (41) assumes  the  more  compact  form 

which  in  effect  is a system  of R equations  (one  for  each  value  of xo) 

in  the %. This  system  of  equations  determines FC as a function  of x. 

for  each -IT , with  the  understanding  that % = 0 if  under IT the  process 

does  not  terminate,  that  is,  there  does  not  exist a finite N such  that 

% E T. Furthermore,  it  is  understood  that 1 - 1 ~  = uG for  states  in T. 

D 

It  is  easy  to  demonstrate  that ( 4 3 )  has a unique  solution. 

Specifically,  by  decomposing  the  set of states T' = {U1, ..., u } into 

disjoint  subsets T' l,..,, Tk , where  Ti , x = l,..., K, represents  the 

set  of  states  from  which T is  reachable  in A steps,  it  is  readily  seen 

that  the  equations  in ( 4 3 )  corresponding  to  the x which  are  in  T1  yield 

uniquely  the  respective  values of 1-1 D o  In terms  of  these,  the  equations 

in ( 4 3 )  corresponding to the x in T yield  uniquely  the  values  of 1-1 

for x in T2. Continuing  in  this  manner,  all  the uD1s can  be  determined 

uniquely  by  successively  solving  subsets  of  the  system  of  equations ( 4 3 )  

for  the  blocks  of  variables  in T i ,  ..., Tk . 

!L 

0 

0 2 D 

0 

For  our  purposes,  it  will  be  convenient  to  represent a 

policy -IT as a policy  vector 
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whose  ith  component,  i - =  1, . . . , ti, is the  input  which  must  be  applied 

when A is  in  state 0 . Note  that Tr((Ji) ranges  over  the  set U = {al,. . . , 
~1 1 and  thus  that  there  are mR distinct  policies in the  policy  space. m 

With  reference  to  the  system  of  equations ( 4 3 ) ,  let 

be  an  n-vector,  termed  the goal attainment  vector,  whose  components  are 

the  values of the  membership  function  of  D  at  ul, ..., an (corresponding 
to  policy T ). It  is  natural to define  a  partial  ordering  in  the  policy 
space  by  the  inequality 

which  means  that  a  policy T '  is  better  than or equal to a  policy T" if 

and  only  if p (Oili'r') 2 pD(aiI?') for  i = 1, .. ., n.  Then,  a  policy 
T will  be  said  to  be  maximal  if  and  only  if T is  better  than  or  equal 

to  every  policy  in  the  policy  space. 

D 

Does  there  exist  a  maximal  policy  for  the  problem  under 

consideration?  The  answer  to  this  question  is  in  the  affirmative.  This 

assertion  can  be  proved  rigorously,*  but  it  will  suffice  for  our  purposes 

* A proof  for  the  case  of  a  stochastic  finite-state  system  is  given  in 
Ref. 13. 
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to  regard  it  as a consequence of the  alternation  principle14. - a  principle 

of  broad  validity  which  in  concrete  cases  can  be  asserted  as  a  provable 

'theorem. 

Specifically,  let IT' and IT" be  two  arbitrary  policy  vectors, 

with p (IT') and p (IT") being  the  Corresponding  goal  attainment  vectors. 

Using IT' and IT" , let  us  construct  a  policy  vector IT in  accordance  with 

the  following  rules: 

D D 

for  each  component IT. of IT , i = 1, ..., R . Then,  according  to  the 

alternation  principle, IT IT' and T - > IT" , that is, IT is  better  than 
or  equal  to  both IT' and IT" From  this  and  the  finiteness of the 

policy  space  it  follows  at  once  that  there  exists  a  maximal  policy. 

1 

From ( 4 3 )  it  is a simple  matter  to  derive  a  functional 

equation  satisfied  by  the  goal  attainment  vector  corresponding  to  the 

maximal  policy.  Thus,  let 

= Max p (IT) 
IT D 

and  let P(IT) be  an  n x n  matrix  of  zeros  and  ones  whose  ij  th  element  is 
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one i f  and o n l y   i f  D = f (ai, n(o i ) ) ,   tha t  is, t h e  state u i s  the  

immediate successor  of 0 under  policy T . j. j 

i 

which i s  the   des i red   func t iona l   equa t ion   for  . Although  different  

i n   d e t a i l ,   e q u a t i o n  ( 4 9 )  i s  of t h e  same general  form as the   func t iona l  

equat ions  ar is ing  in   the  theory  of   Markoff ian  decis ion  processes .  

Its so lu t ion ,  however, i s  considerably  simpler  to  obtain  because  of  the 

d i s t r i b u t i v i t y  of Max and A . 

VD 

12 -27 

Spec i f i ca l ly ,  l e t  n ,..., 7~ where r = m , denote   the 1 r R 

mR d i s t inc t   po l i cy   vec to r s .  Then,  on using v i n   p l a c e  of Max, ( 4 9 )  

becomes 

Taking  advantage of t h e   d i s t r i b u t i v i t y  of v and A , and f a c t o r i n g   l i k e  

terms, we can  put (50) i n t o  a much simpler  form  which,  written as a 

system of equa t ions   i n   t he  components of pM , reads D 



where cc = r(ai) = input  under  policy IT in state oi ; pD (ai) = i  th 

component  of  the  maximal  goal  attainment  vector; f(a a ) = successor 

state* of ai for  input a with  f  (ai, a.) = ai for  i = ra+l,. . . ,n (that 
is,  for a in the  termination  set  T) ; pC (aj lai) = value  of  the  member- 

ship  function  of  the  constraint C in  state a for  input a , with uc(a. loi) = 1 

for  i = R+l, ..., n; and  for  i = J!,+l,...,n, pD (ai) = pG(ai) = 

value of the  membership  function of the  given  goal  G  at 0 Thus, the: 

pD (cri), i = 1,. . . > R ,  are  the  unknowns  in  (51),  while  the uD (ai) , I = 

R + 1  D . ,  ,PI, and  the 1-1 ( a .  I oi), i = 1, . . . , n , j = 1, . . . , m , are  given 

M 
j 

i' j 

j '  J 

i 

i 1 J 
M 

i *  
M M 

c 3  
constants. 

To make  the  solution  of (51) more  transparent,  it  is  help- 

ful to simplify  the  notation  in (51) by  letting  the  unknowns  in (51)  be 

denoted  by wi that  is, wi = pD (ai) for  i = 1, . . . Furthermore, 

let  the  product  and  plus  symbols  denote A and v ,  respectively.  Then, 

(51) can  be  written  more  compactly in matrix  form  as 

M 

* Note  that  the  successor  states in ( 4 9 )  are  defined  by P ( r ) .  
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bik = 0 if crk is  not  an  immediate  successor of ui ; 

bik = V b (a 10 1, where  the a are  inputs  which  take ai into uk ; 
C P i  P 

a 
P 

and 

with  the  understanding  that 1-1 (d. ) = 0 for  states  outside  the  termina- 

tion  set T. 
G i  

Having  put (51) into  the  form  of  a  linear  equation (52),  

it is easy  to  show  that (53) and  hence (51) can  be  solved  by  iteration. 

Specifically,  let w O =  (o,.. . ,o> and 

w = B w + y , s = 0,1,2,. .. S 
( 5 4 )  

Then, by  induction,  the  sequence w , w w , .. is  monotone  non-decreas- 
ing.  For,  assume  that wk+l wk for  some k. Using ( 5 4 ) ,  we  have 

0 1 2  

and  noting  that a' 1. w = 0 , it  follows  that us+' > Us - for s = 0,1,2,. .. . 0 

Since  the  sequence w , w , ... is  monotone  non-decreasing 
and  bounded  froni  above  by w = (l,...,l), it  follows  that  it  converges  to 

0 1  
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the  solution of ( 5 2 1 ,  that  is,  to  the  first fi components* of the  maximal 

goal  attainment  vector LI,, . Actually,  a  more  detailed  argument  shows 
that ( 5 4 )  yields  the  solution  of ( 5 2 )  in  not  more  than fi iterations.  In 

M 

essence,  this  follows  from  the  fact  that  if T is  reachable  from  a  state 

in T’, then  it  is  reachable  in R or  fewer  steps. 

To gain  an  intuitive  insight  into  the  above  solution,  it 

is  helpful  to  interpret  the  transition  from ( 4 9 )  to (51) with  the  aid  of 

the  state  diagram  of A.  Thus,  for  concreteness  assume  that A has  five 

states,  with  transitions  corresponding  to  various  inputs  shown  in  Fig.2. 

In  this  diagram,  the  number  associated  with  the  branch  leading  from 0 

to  its  successor  state  via  input a is the value of p (a .  1 0  ) . States 

a and a are  in  the  termination  set  and  the  corresponding  values of 

p (a. ) are shown alongside.  The  indicated  values  of  the p ( a .  la ) cor- 

respond to the  constraint  sets 

i 

j C J i  

4 6 

G 1  C J i  

For  the  system  in  question,  the  state  transition  function 

f(o a ) is  given  by  the  following  table i’ j 
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CLfi Ul “2 (5 3 “4 U5 

I 
CL 1 a4 “3 5 U4 U U 5 

cL2 a2 O2 1 U4 ‘(55 (3 

From t h i s   t a b l e ,  i t  is easy   to   cons t ruc t   the  matrix P(IT) f o r  any  given 

policy.  For  example,  for IT = ( a2, al, a2 ), w e  have 

0 1 0 0  

P ( a , a , C L ) =  2 1 2  1: 1 1 
0 

The system  of  equations  (51) i s  obtained by r eve r s ing   t he  

d i r e c t i o n  of f low  in   each  branch  (see  Fig.3)   and  t reat ing  the  s ta tes   in  

T ,  t h a t  i s ,  u and u as sources ,   wi th   the states i n  T ’ ,  t h a t  i s ,  U 

a2 and u , playing   the   ro le  of receptors   ( s inks) .  From the  diagram 

shown in   F ig .3 ,   t he   equa t ions   i n  (51)  can  be w r i t t e n  by inspection.  Thus, 

4 5 1’ 

3 
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Employing  the  simplified  notation in  which A and v are 

replaced  by  the  product  and  sum,  respectively,  and wi = pD (ai), i = 1, 

2,3, the  system of equations (56) becomes 

M 

u = B w + y  (57) 

where 

B =  

0 1 0 

0 1 0.8 

0.7 0 0 

Letting uo = ( o , o , o ) ,  we  o5tain on first  interation w1 = 

( 0 . 6 ,  0 ,  0 . 8 ) .  

Subsequent  iterations  yield 

u2 = (0.6, 0.8, 0 .8 )  

u3 = (0.8, 0.8, 0.8) 

u4 = (0.8,  0.8, 0.8) 

Thus, u3 = (0.8, 0.8, 0.8)  is  the  solution of (57). 

To visualize  the  iteration  process,  imagine  that  each of 

the  sources  in  Fig.3  (which  are  the  absorbing  states  in  Fig.2)  generates 

balls of various  diameters,  with a i =R+l, ..., n, generating  balls i y  
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of diameters  ranging  from 0 to pG(ai). Furthermore,  imagine  that  a 

branch  in  Fig.2  which  leaves  state (5 via  input a , i s  a  pipe  of  diam- 

eter p (a I.,) which  can  carry  balls of diameter 2~ (a Iu ) along  the 

reverse  direction,  that  is,  along  the  direction  shown  in  Fig.3.  Thus, 

the  diagram  of  Fig.3 may be  visualized  as  a  network of pipes  whose  diam- 

i j 

c j  c j i  

eters  are  indicated  in  the  diagram  and  which  can  carry  balls of lesser 

or  equal  diameter  in  the  indicated  directions.  The  states  in  the  termi- 

nation  set (a and 0 1 play  the  role of sources  of  balls  of  diameters  up 

to p (a ) and p (a ) respectively,  while  the  remaining  states (a 

and a ) act  as  receptors.  Because  the  absorbing  states  act  as  sources, 

we  shall  refer  to  the  method  of  solution  described  above  as  a  reverse- 

4 5 

G 4   G 5  1’ a2 

. 3  

flow  technique. 

Now  assume  that  it  takes  one  unit  of  time  for  the  balls 

to travel  from a node of the  network of Fig.3  to  another  node. If we 

start  with  no  balls  at al, 0 and 0 at  time 0, then  at  time t = 1 2 3 
the  maximum  diameters  of  balls  at a and  will  be,  respec- 1’ 2 3 

tively , w w1 and w1 where w = (wl, w2, w ) is  the  first  iter- 1 1 1 1  
3 1’ 2  3’ 

ate  of (57). At time t = 2,  the  maximum  diameters  of  balls  will  be 

given  by w2 and  at  time t = 3 by w . Since  it  takes  no  more  than 3 

three  units  of  time  for  any  ball  to  travel  from  its  source  to  any  node 

in  the  network,  there  will  be  no  further  increase  in  the  size  of  balls 

at  each  source  upon  further  iteration.  Thus, w gives  the  maximum 

diameter of balls at each  receptor  node  and  hence  is  the  desired 

solution of (57). 

3 
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Turning  to  the  illustration of ( 4 3 )  and  the  alternation 

principle,  consider  the  policy  vector 7~ = (al, al, all. For this 7~ , 
the  system of equations ( 4 3 )  becomes 

In this  case, u1 and a are  in T' and 0 is in Ti . 
Noting  that vD (a4 1 IT) = vG (a,) = 1 and 1-1 (a5 I n) = vG (a5) = 0.8, 

we find  at  once vD (01 I .rr) = 0.6 ; pD(u21 IT) = 0.8 ; vD ( 'J31  IT) = 0.8 

3 1 2 

which  is  the des ired solution. 

Carrying  out  the same computation  for  other policy vectors, 

we  obtain  the  results  tabulated  below 

(5 1 O2 U 3 

0.6 0.8 0.8 

0.6 0.6 0.6 

0.6 0 0.8 

0.6 0 0.6 

0.8 0.8 0.8 

0 0 0 

0 0 0.8 

0 0 0 
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1 As a  check on the  alternation  principle,  let  us  take 

1 ;  

I' IT' = (a,; al, a2) and IT" = (a1, a2, all. Using (47) leads  to IT = (a1, a 1, 

1,; ! I  Note  that IT 2 IT' and IT 2 ITTT". From  inspection of the  table,  the  maximal 

policy is seen  to be (a,, al, al). which  agrees  with  the  result  obtained 

by  iteration. 

The  approach  to  the  solution of problems  involving  implic- 

itly  defined  termination  time  which  we  have  described in this  section  can 

be  extended  to  more  complex  decision  processes  in  a  fuzzy  environment.  In 

particular,  the  technique  employed for solving  the  functional  equation ( 4 9 )  

can  readily  be  extended  to  fuzzy  systems  in  a  fuzzy  environment.  Furthermore, 

( 4 3 )  and ( 4 9 )  can  be  extended  also - as  in  section 4 - to stochastic  finite- 
state  systems.  Because  of  limitations  on  space,  we  shall  not  consider  these 

cases  in  the  present  paper. 

7. Concluding  Remarks 

The  task  of  developing  a  general  theory  of  decision- 

making  in  a  fuzzy  environment  is  one  of  very  considerable  magnitude  and 

complexity.  Thus,  the  results  presented  in  this  paper  should  be  viewed 

as  merely  a  first  attempt  at  constructing  a  conceptual  framework  for 

such  a  theory. 

There  are  many  facets  of  the  theory of decision-making 

in a  fuzzy  environment  which  require  more  thorough  investigation,  Among 
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these  are  the  question o f  execution of fuzzy  decisions;  the  way  in 

which  the  goals  and  the  constraints  must  be  combined  when  they  are  of 

unequal  importance  or  are  interdependent;  the  control  of  fuzzy  systems 

and  the  implementation  of  fuzzy  algorithms;  the  notion  of  fuzzy  feed- 

back  and  its  effect on decision-making;  control of systems  in  which  the 

fuzzy  environment  is  partially  defined  by  exemplification;  and  decision- 

making  in  mixed  environments,  that is, in environments  in  which  the 

imprecision  stems  from  both  randomness  and  fuzziness. 
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Fig. 1. Relation between the  goal,  the  constraint and the  decision. 
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Fig. 2. State  diagram for A. 
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Fig. 3.  Reversed-flow s t a t e  diagram 
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